Warum ist Biodiversität wichtig?

Unter Biodiversität versteht man die Vielfalt der Lebewesen auf genetischer, Arten- und Ökosystemebene. Für das ökologische Gleichgewicht ist sie unvermeidlich, denn sie trägt zur Klimaregelung bei, filtert Luft und Wasser, ermöglicht die Bodenbildung und mindert die Auswirkungen von Naturkatastrophen. Außerdem stellt sie für den Menschen die Grundlage der Versorgung mit Holz, Fisch und Nutzpflanzen, für Bestäubung, Ökotourismus, und Medikamente und hat einen positiven Effekt auf die körperliche und geistige Gesundheit.¹

Biodiversität und der Mensch

Denn die Anzahl der Menschen nimmt ständig und immer rasanter zu. 1804 wurde die 1-Milliarden-Marke und 1974 die 4-Milliarden-Marke überschritten. 2020 liegen wir bei 7,92 Milliarden. Die 8te Milliarde wird für das Jahr 2023² prognostiziert und im Jahre 2050 werden Berechnungen zufolge zwischen 9,4 und 10,1 Milliarden Menschen die Erde bevölkern. Diese Hochrechnung sieht weiter voraus, dass am Ende des Jahrhunderts zwischen 9,4 und 12,7 Milliarden Menschen (je nach Szenario) auf der Erde leben. Um all diese Menschen mit den Rohstoffen zu versorgen, die sie benötigen, ist eine intakte Biologische Vielfalt unabdinglich notwendig!

Bevölkerungszuwachs der Erde³

- 1 Milliarde – 1804
- 2 Milliarden – 1927 (Zunahme innerhalb von 123 Jahren)
- 3 Milliarden – 1960 (Zunahme innerhalb von 33 Jahren)
- 4 Milliarden – 1974 (Zunahme innerhalb von 14 Jahren)
- 5 Milliarden – 1987 (Zunahme innerhalb von 13 Jahren)
- 6 Milliarden – 12. Oktober 1999 (Zunahme innerhalb von 12 Jahren)
Nahrung

Vielfalt der Sorten – Grundlage der benötigten Vitamine, Mineralien...

Der menschliche Körper ist für einen funktionierenden Stoffwechsel auf die Zufuhr verschiedener Nährstoffe angewiesen. Diese Kohlenhydrate, Fette, Proteine, Mineralstoffe und Vitamine zieht sich der Mensch normalerweise aus seiner Nahrung. Auch hier ist eine vielfältige Ernährung das gesündeste.

Produktion

Genetische Variationen

Durch die industrialisierte Form der Landwirtschaft werden die genetischen Grundlagen der Nutztiere und -pflanzen wesentlich verringert. Die Hochleistungsrasen, die überall auf der Welt verwendet werden, haben nur eine sehr schmale genetische Basis. Damit verschwinden weniger leistungsfähige alte Rassen nicht nur vom Markt, sondern mit ihnen sterben auch die in Jahrhunderten gezüchteten genetischen Anpassungen aus. Züglich nimmt die Zahl ihrer wilden Verwandten durch die Veränderungen der Landschaft und der Ökosysteme ab, was zu einer zusätzlichen Verarmung des genetischen Potentials führt.

Eine Untersuchung des Rural Advancement Fund International (RAFI) zu 75 in den USA kultivierten Feldfrüchten ergab, dass 97% der Sorten aus alten Landwirtschaftskatalogen heute nicht mehr existieren. Der Trend zum gleich wachsenden und gleichaussehenden Gemüse wurde immer größer – was auch den zunehmenden Supermarktketten zuzuschreiben ist. Da sich z.B. gerade gewachsene Gurken besser stapeln und verpacken lassen als krumme Gurken, liegt der Fokus für Supermärkte auf geraden Gurken.

Genetische Verarmung

Im vorigen Jahrhundert existierten etwa 10.000 Weizensorten, innerhalb von 20 Jahren sind diese auf nur noch 1000 zurückgegangen.

Auf Sri Lanka gab es 2000 Reissorten, heute sind es nur noch fünf. 75% aller landwirtschaftlich relevanten Reissorten stammen von einer einzigen Mutterpflanze ab.

Die gesamte Sojaproduktion in den USA beruht auf nur sechs Pflanzenindividuen eines Standorts in Asien.

Im kommerziellen Bananenbau stammen die fünf großen kommerziellen Sorten von einer Pflanze ab, sodass eine entsprechende Krankheit die gesamte weltweite Bananenverzweigung bedrohen würde.

In den USA wurden zwischen 1804 und 1904 rund 7.100 Apfelsorten angebaut, davon existieren 86% heute nicht mehr. Ähnlich sieht es bei Tomaten (81%), noch schlechter bei Kohl (95%), Feldmais (91%) und Erbsen (94%) aus.

Wie Genetische Vielfalt die Banane rettete

Dünger/Pestizide
Im Gegensatz zu Pestiziden und dem einkreuzen verschiedener Resistenz ist eine genetische- bzw. eine Artenvielfalt ein natürlicher Schutz für die Pflanzen. Denn je mehr Pflanzen in einem Feld wachsen, umso niedriger wird die Wahrscheinlichkeit, dass Schädlinge großen Schaden anrichten können.

Bestäubung
Für die Tierbestäubung verlässt sich eine Pflanze auf optische und chemische Reize, sprich Farbe und Duft, um die Tiere anzulocken und „belohnen“ seinen Kurier im Umkehrschluss mit Nektar und Pollen als Nahrung. 87,5 % aller blühenden Pflanzen werden weltweit von Tieren bestäubt und 35 % der gesamten Weltproduktion von Kulturpflanzen kommen von Arten, die, zumindest teilweise, für die Bestäubung von Insekten abhängig sind.
Von den etwa 1,8 Millionen wissenschaftlich beschriebenen Arten von Tieren, Pflanzen und Pilzen beschrieben, macht die Gruppe der Insekten über die Hälfte aus. Insekten stellen gut 70 Prozent der Tierarten weltweit und sind damit die artenreichste Gruppe aller Lebewesen. Schätzungen gehen davon aus, dass es neben der Million bisher entdeckten Arten bis zu 4,5 Millionen weitere unentdeckter Insektenarten gibt.
Würden wir sie zählen, so kämen auf jeden Menschen dieser Erde rund 1,4 Milliarden Insekten aus geschätzten 5,5 Millionen unterschiedlichen Arten. Insekten halten die ökologischen Systeme der Erde am Laufen. Nicht nur ist die Pflanzenbestäubung auf die Insekten angewiesen, sie räumen auf, in dem sie Dung, abgestorbene Pflanzen oder Tiere zersetzen und dabei die Qualität unserer Böden erhalten.¹⁹

Landwirtschaft

Auf der anderen Seite sorgt der Mensch mit Äckern, Lebensmittelgärten, Häusern und nicht zuletzt seiner eigenen Massenvermehrung für ein reiches Angebot an Nahrung für viele Insekten. Diese ergibt innerhalb der Landwirtschaft die parallelelaufende Schädlingbekämpfung.²³ Weltweit sind Insekten für 17 bis 30 Prozent der Ernteverluste verantwortlich, insbesondere in Ländern, die von Hunger und Armut geprägt sind. Insekten spielen auch eine große Rolle bei Verlusten nach der Ernte, die in Entwicklungsländern rund 40 Prozent beträgen können.²⁴

Bedrohung

Viele Bestäuberarten zählen mittlerweile als Gefährdet. Besonders in industrialisierten Regionen wie Amerika und Europa gehen die Bestände der Arten stark zurück, viele Arten sind bedroht. Hauptgrund für dieses Artensterben ist der Verlust von Nahrungsquellen und Nistplätzen durch die industrielle Landwirtschaft.²⁸

Nicht nur die Nahrungsmittel für den Menschen, sind von einem Insektenrückgang enorm betroffen. Insekten bilden die Nahrungsgrundlage für unzählige andere Tierarten, die wiederum verschwinden, wenn das Nahrungsangebot wegfällt. Das sensible ökologische Netz ist von den Insekten abhängig.

Bienen besuchen etwa zehn Millionen Pflanzen, um Nektar für etwa ein halbes Kilo Honig zu sammeln. So tragen sie die Pollen von Blüte zu Blüte.²⁹ Studien zeigten, dass die Bestäubungsleistung zunimmt, wenn „wilden Insekten“ involviert sind.³⁰
Boden
Boden beheimateten die weltweit größte Biodiversität: 90% aller lebenden Organismen der terrestrischen Ökosysteme verbringen mindestens Teile ihres Lebens im Boden. Die verschiedenen Bodenbausteine bilden eine ungleichmäßige Vielfalt an Habitaten für unzählige Bodenorganismen, die die Grundlage für das Leben auf der Erde darstellen.32

Die Böden erfüllen all ihre Funktionen jedoch nur, wenn das Bodenleben intakt und die Humusschicht gesund sind. Aktuell gehen durch falsche Nutzung jährlich rund 24 Milliarden Tonnen fruchtbarer Böden verloren.35 Unsere Böden stehen laut dem European Commission’s Joint Research Centre (JRC) unter enormem Druck: Klimawandel, Landnutzungsänderungen (vor allem durch Versiegelungen), Habitatserschließung, Umweltverschmutzung (Emissionen und Pestizide), Übernutzung, invasive Arten,36 um nur einige der Treiber zu nennen. Die weltweiten Bodenverluste übersteigen das 20 bis 100-fache der Neubildung von Boden und jährlich degradiert annähernd 100 000 Quadratkilometer Agrarfläche durch Austrocknung, Erosion und Versalzung und gehen damit für die Produktion von Tierfutter und Nahrungsmitteln verloren.37

Der Anteil der noch nicht taxonomisch erfassten Organismen im Boden ist besonders hoch. Es wird geschätzt, dass weltweit 75% der Regenwurm-, 50% der Ameisen- und 50% der Milbenarten noch nicht beschrieben sind. Noch ausgeprägter ist es bei den Bodenmikroorganismen: Hier sind, wie beispielsweise bei den Pilzen, erst maximal 6% der Organismen bekannt. Es wird davon ausgegangen, dass weltweit lediglich 1% der Bodenmikroorganismen taxonomisch erfasst und beschrieben sind.38

In einer Handvoll Erde leben mehr Organismen als Menschen auf unserem Planeten. Zwei Drittel aller Arten der Welt leben versteckt unter der Erdoberfläche.42
Der Nährstoffkreislauf

Besonderheit im Regenwald

MILPA

Rohstoffe

Energie
Erneuerbare Energien spielen eine immer größer werdende Rolle in unserem Alltag. Sie sind wichtig, um von umweltschädlichen fossilen Energieträgern oder von Kernenergie weg zu kommen und helfen weniger CO₂ zu produzieren.

Windenergie

Solarenergie

Biomasse

Kleidung

Medizin

Es folgen weitere spannende Beispiele für tropische Pflanzen, deren Wirkstoffe schon heute in der Schulmedizin angekommen sind.
Madagaskar-Immergrün (Catharanthus roseus) - Krebserkrankungen:

Ingwer (Zingiber officinale) - Übelkeit und Entzündungen

Passionsblume (Passiflora) - Nervosität und Einschlafstörungen

Silberweide - Schmerzen

Ananas (Ananas comosus) - Entzündungen und Schwellungen

Der Stamm der Ananaszweige enthält Bromelain, ein Gemisch aus entzündungshemmenden und abschwellenden Enzymen. Man setzt dieses z. B. nach Operationen und bei Verletzungen ein, aber auch bei Nasennebenhöhlenentzündungen.

Jaborandi-Strauch (Pilocarpus spp.) - Augenheilkunde und Speichelverlust

Schon seit Jahrhunderten kauen die Urinwohner Brasiliens, die aromatisch riechenden, dichten Schneeblättern der Jaborandi-Strauch, was zu vermehrtem Schweigen und Speichelverlust führt. Später erkannte man, dass sich durch den Konsum der Pupillen venösen Druck. Dies machte die Pflanze interessant für die Augenheilkunde. Der aus den Blättern isolierte Wirkstoff Pilocarpin wird heute vor allem in Augentropfen zur Verbesserung der Augeninnendrucks verwendet. Als Tabletten kommt er außerdem bei schweren Störungen der Speichelbildung zum Einsatz.

Kakao (Theobroma cacao) - diverse Kaffeegesellschaften

Chinin - Schmerzen und Fieber

Chinin ist ein Stoff, den die Indigenen aus den Anden bereits seit vielen Jahren, wegen seiner schmerz- und fieberbehebenden Wirkung kennen. Der Stoff ist aufgrund seiner Vielseitigkeit so wichtig für die Medizin, dass der Chinarrindenbaum, aus dem Chinin gewonnen wird, sogar auf dem Wappen von Peru zu sehen ist. Besonders bekannt ist der Stoff als Leitsubstanz bei der Entwicklung von modernen Malaria Medikamenten.
Bionik

Es folgen weitere Beispiele der Bionik, die längst in unseren Alltag eingezogen sind:

Lotusblume

Hai-Haut

Klettrfrucht

Ein alltägliches Beispiel für Bionik ist der Klettrverschluss. Nachempfunden ist es der Großen Klette, die kleine, elastische Haken nutzt um ihre Früchte an Tiere anzuheften und so zu verbreiten. Selbst wenn man die Haken mit Kraft vom anhaftenden Gegenstand löst, bleiben die Haken intakt und können wieder angebracht werden. Ideal, um zwei Gegenstände zeitweilig miteinander zu verbinden.

Katzenpfoten

Große Rabbbkatzen wie der Gepard können extrem schnell laufen, gleichzeitig sind sie aber auch sehr wendig, weil sie gut abbremsen können. Das können sie, weil sie die Größe ihrer Pfoten variieren. Beim Laufen ziehen sie die Pfoten zusammen und haben so weniger Reibung, können schneller laufen und sparen Kraft. Beim Bremsen spreizen sie ihre Pfoten auf und können so mehr Bremsleistung umsetzen. Davon hat sich ein Reifenhersteller inspirieren lassen und einen Reifen auf den Markt gebracht, der beim Fahren schmaler wird, aber sich beim Bremsen vergrößert.

Gecko

Quellennachweis zu Lehrerinfo 2B

3. Ebd.
17. Ebd. S. 129.
23. Ebd. S. 32.
29. Ebd.
Quellennachweis zu Lehrerinfo 2B

42. Ebd.
47. Ebd. S. 8.
48. Ebd. S. 42.
49. Ebd. S. 35.
50. Michael, Thomas; Diercke, Carl (o. J.): Diercke-Weltatlas.
Quellennachweis zu Lehrerinfo 2B

69. Ebd.

70. Ebd.

